
Shifted 1/N expansion and exact solutions for the potential V(r)=-Z/r+gr+λr2

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 3025

(http://iopscience.iop.org/0305-4470/21/13/025)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 16:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 21 (1988) 3025-3034. Printed in the U K  

COMMENT 

Shifted 1/N expansion and exact solutions for the potential 
V ( r ) = - Z / r + g r +  hr2 

R K Roychoudhury? and Y P Varshni 
Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K I N  6N5 

Received 2 October 1987, in final form 14 March 1988 

Abstract. We have found an infinite number of exact solutions for the hydrogenic atom 
in the external potential V (  r )  = g r +  Ar2, not only for an s-wave state but for higher waves 
as well, from supersymmetric considerations. The general Schrodinger equation has been 
treated by the shifted 1/ N expansion method. The eigenvalues obtained from the shifted 
l /  N expansion are compared with those obtained by Bessis er al and also with the 
supersymmetric exact values. 

1. Introduction 

Recently Bessis et a1 (1987) obtained exact solutions for the states for the potential 

V ( r ) = - Z / r + g r + A r 2  (1) 
subject to special relations between g, A and the nuclear charge Z. Potential (1) 
describes a hydrogenic atom with the perturbation V( r )  = gr + Ar2. Potentials of the 
form V(r) = - Z / r + g r  (linear plus Coulomb) have been studied extensively in the 
context of the quark model for the J/ + spectrum and similar bound-state problems in 
particle physics (Quigg and Rosner 1979, Eichten et a1 1978, Rein 1977). Killingbeck 
(1978) and Saxena and Varma (1982a) have studied the potential V ( r ) =  
- Z / r + 2 p r + 2 p 2 r 2  with Z = 1. Analytical solutions for the s-wave states for some 
particular values of p were obtained by Saxena and Varma (1982b). 

In the present comment we have obtained exact solutions for any value of the 
angular momentum when the coupling parameters satisfy certain relations among 
themselves. The solutions obtained by us are a generalisation of those obtained by 
Bessis et a1 (1987). We took a clue from the supersymmetric structure of the Hamil- 
tonian for certain values of the parameters and then obtained the general solution for 
the wavefunctions in the form r'+' exp(-ar2 - br)  U:=, (1 +g,r) .  For the general poten- 
tial we have also applied the shifted 1/N expansion method to obtain the energy 
eigenvalues. The shifted 1 / N  expansion proposed by Sukhatme and Imbo (1983) 
differs from the ordinary large-N expansion method by modifying the expansion 
parameter, which instead of k = N + 21 (Mlodinow and Papanicoloau 1980, 1981) 
becomes F =  N + 21 - a. The shift a is so chosen as to obtain exact analytical results 
for the harmonic oscillator. This method has proved to be a powerful method for 
obtaining the eigenvalues of spherically symmetric potentials (Dutt et a1 1986a, b, Dutt 
and Varshni 1987, Roy and Roychoudhury 1987a, Varshni 1987). It is non-perturbative 

t On leave from the Indian Statistical Institute, Calcutta. 
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in nature (in terms of coupling parameters) and thus can be used in problems for large 
coupling parameters. The potential ( l ) ,  for large Z and small g and A, behaves like 
a Coulomb potential with a small perturbation and for large A and relatively small Z 
and g behaves like a harmonic oscillator potential with small perturbation and hence 
it is suitable for treatment by the shifted 1/ N expansion method, especially for larger 
values of 1. In 0 2 we discuss the exact solutions obtained from supersymmetric 
considerations and in § 3 we present the shifted 1/ N expansion method for the potential 
(1 ). The results are discussed in Q 4. Throughout the paper we shall use atomic units 
in which m = A = c = l .  

2. Supersymmetric character of the hydrogenic atom with the perturbation 
V ( r )  = gr + Ar2 and exact solutions 

Before casting the problem in supersymmetric form we give below a summary of the 
salient features of supersymmetric quantum mechanics ( SUSYQM) in one dimension. 
In one dimension the Hamiltonian of SWSYQM is given by 

where 

H,= - i d 2 / d x 2 +  V,(X) 

V*(X) = +( W2(x) * d W(x)/dx) .  
(3)  

(4) 
W(x) is called the superpotential and Q, Q' the supercharges, whose explicit forms 
are given below: 

The relations 

1 
Q=-((p+iW) Jz 

1 
Q'=- ( p - i  W) Jz 
obeyed by Q, Q' and HS are the following: 

[ H s ,  Q]=[Hs,  Q']=O 

Q~ = 0'2 = 0. 

The eigenstates of H S  are 

If supersymmetry is unbroken the ground-state energy is zero and the ground-state 
wavefunctions are of the form 

depending on the normalisability of 4:(x) or 4!(x). Now if I $ )  is a ground state then 

(9) QI$) = Q'I$) = 0. 
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From ( 4 )  and ( 5 )  it follows that 

4",(x) = exp( * {' W (  t )  d t ) .  (10)  

Now consider the case of hydrogenic atom with a perturbation V (  r )  = gr + Ar2 with 
the Schrodinger equation given by 

1 ( 1 + 1 )  z 
2 d r 2  r 

Following our previous method of constructing exact solutions of Schrodinger equation 
from supersymmetric considerations (Roy and Roychoudhury 1987b), the general 
ansatz for W is taken as 

c g,  W = a r + b + - + x  -. 
r , = I  l + g , r  

Then V - ( r )  =+( W 2 -  W ' )  can be written in the form 

c ( c +  1 )  2bc  
r2 r 

2 ~ - ( r ) =  w2- W'=- + b 2 + a 2 r 2 + 2  abr+-+2ac 

( 1 2 )  

Now the effective potential appearing in the Schrodinger equation ( 1 1 )  and that 
appearing corresponding to the potential V - ( r )  in ( 1 3 )  are respectively 

2 2  1 ( 1 + 1 )  
r r2 

2 Veff( r )  = 2Ar2 + 2gr --+- 
2 V'R( r )  = 2 V-( r ) + ( 2 n  + 1 - 2 c ) a  - b2 ( 1 5 )  

(this is V - ( r )  without the constant term which can be absorbed in the definition of 
energy). Now we choose g ,  and a, b and c such that ( 1 4 )  and (15) become identical. 

Comparing ( 1 4 )  and ( 1 5 )  we get 

c = - ( l +  1) a = (2A)"' b = g / a  = g / ( 2 A ) 1 ' 2 .  (16) 
A negative value of c is taken so that exp( -1" W d t )  is normalisable and the g ,  satisfy 

2 c g f - 2 b g j + 2 a + 2 g f  1 L- - 0  i = O , 1 , 2  , . . . ,  n with g,=O ( 1 7 )  
J f l  g l -gJ 

and Z is given by 

2 = c 1 g ,  - bc. ( 1 8 )  
The relation between the supersymmetric energy and the energy for the hydrogenic 
atom is obtained from the identity 

2 V - ( r )  - 2 E -  = 2 V e ' ( r )  - 2 E h  

or 

2 E -  - ( b 2 + 2 a c  -2na - a )  = 2 E h  
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where Eh denotes the eigenvalues of the Schrodinger equation corresponding to the 
potential (14), and E- is the eigenvalue corresponding to the potential f( W 2  - W’). 
From (19a) and (19b) we have 

Eh=E_+f [ (2n+ l -2c )a -b2]  

= E- + (iA)”2[(2n + 3 + 21)] - g2/4A. (20) 
For the supersymmetric zero-energy state the exact values of Eh corresponding to 
E- = 0 are given by 

Eh = (iA)”’[(2n + 3 + 21)] - g2/4A (21) 

and  the corresponding wavefunction is 

n 

$-= ~ o e x p [ - ( A / 2 ) ” ’ r ~ - g r / ( 2 h ) ” ~ ] r ‘ ~ ’  ( l+g , r )  
r = O  

with go = 0, and co being a normalisation constant. gi are given by (17) and  Z is not 
an  independent quantity but is obtained in terms of A and g, by eliminating gi from 
(17) and (18). For example, when n =0,  

and, for n = 1, 

where from (17) g, is given by 

-2(1+ l)g?-- (2A)“’ 2g g’ +2a  = 0. (246) 

Eliminating g, from (24a) and (24b) we can easily obtain Z which is given by 

(24c) Z=- ( I + ; )  * [ & ( I +  1) + g2/8A]”*. 
( 2 A ) ’ ”  

For general n, however, a simpler method to find 2 is the following. Write $- in (22) 
in the form 

$- = c0 e ~ p [ - ( f h ) ” ~ r ~ - g r / ( 2 A ) ” ’ ] r ’ + ’  a,rm 
m =O 

Then using this I+- in the Schrodinger equation (1 1) we obtain, after a few straightfor- 
ward steps, the following recurrence relation: 

a (n  - m)a, + [ Z -  b(m + 1+2)]a,+, + f ( m  + 2 ) ( m  +2Z+3)am+,=0 

m=0 ,1 ,2  , . . . ,  n (26) 

where 

a = dZT b = g/&. 
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Eliminating a,,, we get 

Z -  b ( l +  1) l + l  0 
na Z - b ( 1 + 2 )  3+21 

( n - l ) a  Z - b ( 1 + 3 )  6+31 
0 a 2- b ( l + n +  1) i n (n+21+  1) 

This reduces to the result obtained by Bessis er a1 (1987) when 1 = 0. 

= O .  (27) 

3. Shifted 1/N expansion 

The method for determining the energy eigenvalues in the ,shifted 1/ N expansion 
formalism is given in the paper of Imbo et a1 (1984). Hence for sake of brevity, we 
omit the intermediate steps and give here only the final expressions. 

The energy eigenvalues in the shifted 1 / N  expansion are given in terms of ro ,  
which is determined from the position of the minimum of the effective potential 

For the potential ( l ) ,  with N = 3, 

I? = 4(Zr0+ g r i+  2Ar3 
and the equation for determining ro is found to be 

(21 + 1) + (2n, + 1) (Z+3gr:+8Ari)"' = 2(Zr, + gri  + 2hr;)'" (30) Z+gr;+2Ari 

where n, is the radial quantum number. 
The final expression for the eigenvalues for the potential (1) is as follows: 

( -Z+gr i+Ar i )  y"' y'" 

( Z + g r i + 2 h r i )  P k7 +-+-+o (+)I. 
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in which 

a = 2 - 2 ( 2 n , +  1 ) w  

8 - -58  - 2 E  - - 5 ,  - 2 - a  

E 3 =  -$+ 

-is,= - $ ( 1 - ~ ) ( 3 - ~ )  

3 -  5 4 -  1 -  3 2 -  

Z 
4 ( Z  + gri  + 2 A r 3  

Z 
4 ( Z  + g r i +  2 A r 3  

8 --I+ 

8 - I  

5 -  4 

Z 
4 ( Z + g r t + 2 A r i ) '  6 - 8 -  

4. Results and discussion 

When n = 0, there is a single relation between Z, g and A (equation ( 2 3 ) ) .  If any two 
of Z, g and A are fixed, the third one has a unique value given by equation ( 2 3 ) .  In 
this situation n is readily identified with n,. However, when n > 0, there is a multiplicity 
of relations. For example, when n = 1 ,  we see from equation ( 2 4 )  that for a given set 
of values of g and  A there are two solutions of Z. Similarly, for given values of 2 and 
A, there are two solutions for g. In general, for any given n and two of the parameters, 
there are ( n  + 1) possible values of the third parameter. Intuitively, one expects that 
these various solutions should correspond to n, = 0 , 1 , 2 ,  . . . , n. But the problem is 
which solution correponds to which n,. The identification is made possible by the 
shifted 1 /  N method. We keep Z and A fixed and  treat g as the dependent parameter. 
Eigenenergies are calculated for the various sets of parameters and a comparison with 
the supersymmetric values identifies the value of n,. 

In  tables 1 and 2 we compare the exact supersymmetric results with those obtained 
by the shifted 1/N method. Table 1 is for n = 0 and  table 2 for n = 1. As noted earlier, 
in the latter case, for a given set of values of Z and A, there are two values of g. Thus 
in table 2 the first and  second lines refer to the same values of Z and A but different 
values of g and  n,, and so on. These tables can be used to gauge the accuracy of the 
shifted 1/ N expansion for the potential ( 1 )  for a range of values of 1, Z, A and  g. 

An examination of tables 1 and 2 shows that the accuracy of the shifted l / N  
expansion varies considerably with the parameters. At one end of the spectrum, there 
is seven significant figure accuracy for some values (e.g., n, = 0, 1 = 0, Z = 10, A = 0.1 
in table 1) and, at the other, only one significant figure accuracy (e.g., n, = 1, 1 = 0 ,  
Z = 10, A = 1 in table 2 ) .  For the two extreme cases of potential ( l ) ,  i.e. the Coulomb 
potential and the harmonic oscillator potential, the shifted 1/ N expansion is known 
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Table 1. Comparison of the eigenvalues calculated from the shifted 1/ N expansion with 
the exact supersymmetric values. 

~~~ 

€(shifted E(exact, 
n, I Z A R 1/ N method) supersymmetric) 

0 0  1 0.1 0.447 21 0.171 66 0.170 82 
0 1  1 0.1 0.223 61 0.993 37 0.993 03 
0 2  1 0.1 0.149 07 1.509 79 1.509 69 
0 3  1 0.1 0.111 80 1.981 24 1.981 21 
0 0  1 1 .o 1.414 21 1.627 56 1.621 32 
0 1  1 1 .o 0.707 11 3.41 1 41 3.410 53 
0 2  1 1 .o 0.471 40 4.894 40 4.894 19 
0 3  1 1 .o 0.353 55 6.332 78 6.332 71 
0 0  1 10.0 4.472 14 6.226 80 6.208 20 
0 1  1 10.0 2.236 07 11.057 19 11.05534 
0 2  1 10.0 1.490 71 15.597 32 15.596 92 
0 3  1 10.0 1.118 03 20.093 49 20.093 36 
0 0  1 100.0 14.142 14 20.753 21 20.713 20 
0 1  1 100.0 7.071 07 35.233 90 35.230 34 
0 2  1 100.0 4.714 05 49.442 67 49.441 92 
0 3  1 100.0 3.535 53 63.608 60 63.608 36 
0 0  1 1000.0 44.721 36 66.659 04 66.582 04 
0 1  1 1000.0 22.36068 111.68501 111.67840 
0 2  1 1000.0 14.907 12 156.470 5 8  156.469 20 
0 3  1 1000.0 11.180 34 201.215 30 201.214 87 
0 0 10 0.1 4.472 14 -49.329 18 -49.329 18 
0 1 10 0.1 2.23607 -11.381 96 -11.381 97 
0 2 10 0.1 1.490 71 -3.990 30 -3.990 31 
0 3 10 0.1 1.11803 -1.112 53 -1.112 54 
0 0 10 1 .o 14.142 14 -47.878 68 -47.878 68 
0 1 10 1 .o 7.071 07 -8.964 42 -8.964 47 
0 2 10 1 .o 4.714 05 -0.605 75 -0.605 81 
0 3 10 1 .o 3.535 53 3.239 03 3.238 96 
0 0 10 10.0 44.721 36 -43.291 58 -43.291 80 
0 1 10 10.0 22.36068 -1.31903 -1.31966 
0 2 10 10.0 14.907 12 10.097 63 10.096 92 
0 3 10 10.0 11.180 34 17.000 07 16.999 61 
0 0 10 100.0 141.421 36 -28.781 23 -28.78680 
0 1 10 100.0 70.710 68 22.862 68 22.855 34 
0 2 10 100.0 47.140 45 43.945 35 43.941 92 
0 3 10 100.0 35.355 34 60.516 06 60.514 61 
0 0 10 1000.0 447.21359 17.166 39 17.082 04 
0 1 10 1000.0 223.60680 99.336 72 99.303 40 
0 2 10 1000.0 149.071 20 150.97866 150.96920 
0 3 10 1000.0 111.80340 198.12448 198.121 12 

to be very successful, but it turns out that, for some of the intermediate cases, the 
shifted 1/ N method gives rather poor results. 

An eigenvalue depends on five quantities: n,,  1, Z, A and g. The comparison that 
we have made in tables 1 and 2 has an important limitation. Because Z, A, g and 1 
are connected by certain relations, which are different for different n, it is not possible 
to study the variation in the accuracy of the shifted 1 / N  method when any four of 
the five quantities are kept fixed and the fifth one is varied. For this purpose we take 
recourse to the energies calculated by Bessis et a1 (1987). These authors have also 
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Table 2. Comparison of the eigenvalues calculated from the shifted 1/ N expansion with 
the exact supersymmetric values. Components of each pair of lines (starting with the first 
line) refer to the same values of 1, Z and A but different values of g and n, .  
~ ~~ ~~ 

€(shifted €(exact, 
n , /  Z h  g 1/ N method) supersymmetric) 

1 0  1 0.1 
0 
1 1  1 0.1 
0 
1 2  1 0.1 
0 
1 3  1 0.1 
0 
1 0  1 1.0 
0 
1 1  1 1.0 
0 
1 2  1 1.0 
0 
1 3  1 1.0 
0 
1 0  1 10.0 
0 
1 1  1 10.0 
0 
1 2  1 10.0 
0 
1 3  1 10.0 
0 
1 0 10 0.1 
0 
1 1 10 0.1 
0 
1 2 10 0.1 
0 
1 3 10 0.1 
0 
1 0 10 1.0 
0 
1 1 10 1.0 
0 
1 2 10 1.0 
0 
1 3 10 1.0 
0 
1 0 10 10.0 
0 
1 1 10 10.0 
0 
1 2 10 10.0 
0 
1 3 10 10.0 
0 

0.096 20 
0.574 62 
0.009 69 
0.362 98 

-0.020 25 
0.281 13 

-0.033 59 
0.234 84 

-0.179 99 
2.301 31 

-0.388 85 
1.567 37 

1.255 44 
-0.434 75 

1.071 15 
-3.426 12 
10.134 32 

-3.609 56 
7.336 34 

-3.428 01 
6.036 75 

-3.224 73 
5.237 19 
2.216 24 
4.491 96 
1.452 66 
2.274 12 
1.065 45 
1.543 29 
0.831 91 
1.180 55 
6.876 43 

14.336 78 
4.365 57 
7.419 55 
3.097 98 
5.151 59 
2.350 91 
4.013 06 

20.513 30 
46.568 73 
12.023 07 
25.244 73 

7.961 12 
18.126 34 
5.687 54 

14.437 07 

-0.430 48 

1.15840 
0.293 49 
1.579 47 
1.236 19 
2.016 32 
1.81497 
2.458 93 
2.321 84 
3.654 88 
2.217 96 
4.939 66 
4.336 45 
6.326 9 1  
5.970 13 
7.734 88 
7.491 40 

11.129 19 
8.631 16 

15.379 90 
14.308 78 
19.848 92 
19.213 96 
24.344 50 
23.911 18 

-11.163 53 
-49.326 23 

-3.709 88 
-11.363 86 

-0.822 41 
-3.941 92 

0.733 23 
-1.024 59 
-8.284 23 

-47.850 26 
0.224 22 

-8.812 62 
3.996 76 

-0.270 71 
6.415 85 
3.752 09 
1.093 44 

-43.035 56 
12.294 50 

-0.279 31 
18.650 74 
11.911 24 
23.839 52 
19.386 49 

1.094 90 
0.292 56 
1.565 01 
1.235 86 
2.01 1 44 
1.814 88 
2.456 85 
2.321 80 
3.527 44 
2.21 1 53 
4.91 1 95 
4.335 59 
6.3 17 63 
5.969 93 
7.730 92 
7.491 33 

10.886 88 
8.612 73 

15.326 75 
14.306 93 
19.830 83 
19.213 55 
24.336 77 
23.91 1 04 

-11.161 31 
-49.326 23 

-3.710 27 
-11.363 86 

-0.825 51 
-3.941 92 

0.729 50 
- 1.024 59 
-8.285 77 

-47.850 27 
0.185 20 

-8.812 67 
3.964 58 

6.396 48 
3.752 02 
0.660 45 

12.038 62 
-0.279 94 
18.540 12 
11.910 51 
23.788 04 
19.386 02 

-0.270 77 

-43.035 84 
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employed the method of Stieltjes moments to generate rapidly converging upper and 
lower bounds to the ground-state energy E,(Z,  g, A )  for arbitrary g, Z and positive A. 
The resulting values are accurate to 9 and 10 significant figures. In  table 3 we compare 
the ground-state energy values obtained by the shifted 1 / N  method with those of 
Bessis et a1 (1987) for 2 = 1, A = 1 and a series of g values. It will be noticed that as 
we go down this table, the error reaches a maximum at g = -0.5 and then it steadily 
decreases as g assumes greater positive values. For very large g, the potential (1) tends 
to the linear potential; the trend of results in table 3 indicates that for this potential 
the shifted 1/ N expansion should give very good results for the ground state. This is 
in agreement with the findings of Imbo er a1 (1984). 

Table 3. Comparison between the eigenvalues calculated from the shifted 1/ N expansion 
and those of Bessis er a/  (1987). 

E E 
(Shifted 1 / N  (Bessis et a1 Percentage 

g method) 1987) difference 

-2.0 
-1.0 
-0.5 
-0.1 

0.0 
0.1 
0.5 
1 .o 
2.0 
3.0 
5.0 

-1.14933 
-0.218 57 

0.202 84 
0.522 47 
0.600 25 
0.677 25 
0.977 90 
1.339 1 
2.021 3 
2.660 8 
3.845 0 

-1.171 7 
-0.226 19 

0.196 00 
0.515 94 
0.593 77 
0.670 81 
0.971 62 
1.332 8 
2.014 9 
2.654 1 
3.837 4 

1.9 
3.4 
3.5 
1.3 
1.1 
1 .o 
0.6 
0.5 
0.3 
0.3 
0.2 
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