Shifted $1 / \mathrm{N}$ expansion and exact solutions for the potential $\mathrm{V}(\mathrm{r})=-\mathrm{Z} / \mathrm{r}+\mathrm{gr}+\lambda \mathrm{r}^{2}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 213025
(http://iopscience.iop.org/0305-4470/21/13/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 16:36

Please note that terms and conditions apply.

COMMENT

Shifted $1 / N$ expansion and exact solutions for the potential $V(r)=-Z / r+g r+\lambda r^{2}$

R K Roychoudhury \dagger and Y P Varshni
Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Received 2 October 1987, in final form 14 March 1988

Abstract

We have found an infinite number of exact solutions for the hydrogenic atom in the external potential $V(r)=g r+\lambda r^{2}$, not only for an s-wave state but for higher waves as well, from supersymmetric considerations. The general Schrödinger equation has been treated by the shifted $1 / N$ expansion method. The eigenvalues obtained from the shifted $1 / N$ expansion are compared with those obtained by Bessis et al and also with the supersymmetric exact values.

1. Introduction

Recently Bessis et al (1987) obtained exact solutions for the states for the potential

$$
\begin{equation*}
V(r)=-Z / r+g r+\lambda r^{2} \tag{1}
\end{equation*}
$$

subject to special relations between g, λ and the nuclear charge Z. Potential (1) describes a hydrogenic atom with the perturbation $V(r)=g r+\lambda r^{2}$. Potentials of the form $V(r)=-Z / r+g r$ (linear plus Coulomb) have been studied extensively in the context of the quark model for the J / ψ spectrum and similar bound-state problems in particle physics (Quigg and Rosner 1979, Eichten et al 1978, Rein 1977). Killingbeck (1978) and Saxena and Varma (1982a) have studied the potential $V(r)=$ $-Z / r+2 \beta r+2 \beta^{2} r^{2}$ with $Z=1$. Analytical solutions for the s-wave states for some particular values of β were obtained by Saxena and Varma (1982b).

In the present comment we have obtained exact solutions for any value of the angular momentum when the coupling parameters satisfy certain relations among themselves. The solutions obtained by us are a generalisation of those obtained by Bessis et al (1987). We took a clue from the supersymmetric structure of the Hamiltonian for certain values of the parameters and then obtained the general solution for the wavefunctions in the form $r^{i+1} \exp \left(-a r^{2}-b r\right) I_{i=1}^{n}\left(1+g_{i} r\right)$. For the general potential we have also applied the shifted $1 / N$ expansion method to obtain the energy eigenvalues. The shifted $1 / N$ expansion proposed by Sukhatme and Imbo (1983) differs from the ordinary large- N expansion method by modifying the expansion parameter, which instead of $k=N+2 l$ (Mlodinow and Papanicoloau 1980, 1981) becomes $\bar{k}=N+2 l-a$. The shift a is so chosen as to obtain exact analytical results for the harmonic oscillator. This method has proved to be a powerful method for obtaining the eigenvalues of spherically symmetric potentials (Dutt et al 1986a, b, Dutt and Varshni 1987, Roy and Roychoudhury 1987a, Varshni 1987). It is non-perturbative
† On leave from the Indian Statistical Institute, Calcutta.
in nature (in terms of coupling parameters) and thus can be used in problems for large coupling parameters. The potential (1), for large Z and small g and λ, behaves like a Coulomb potential with a small perturbation and for large λ and relatively small Z and g behaves like a harmonic oscillator potential with small perturbation and hence it is suitable for treatment by the shifted $1 / N$ expansion method, especially for larger values of l. In $\S 2$ we discuss the exact solutions obtained from supersymmetric considerations and in § 3 we present the shifted $1 / N$ expansion method for the potential (1). The results are discussed in $\S 4$. Throughout the paper we shall use atomic units in which $m=\hbar=c=1$.

2. Supersymmetric character of the hydrogenic atom with the perturbation $V(r)=g r+\lambda r^{2}$ and exact solutions

Before casting the problem in supersymmetric form we give below a summary of the salient features of supersymmetric quantum mechanics (SUSYQM) in one dimension. In one dimension the Hamiltonian of susyom is given by

$$
H^{\mathrm{s}}=\left\{Q^{+}, Q\right\}=\left(\begin{array}{cc}
H_{+} & 0 \tag{2}\\
0 & H_{-}
\end{array}\right)
$$

where

$$
\begin{align*}
& H_{ \pm}=-\frac{1}{2} \mathrm{~d}^{2} / \mathrm{d} x^{2}+V_{ \pm}(x) \tag{3}\\
& V_{ \pm}(x)=\frac{1}{2}\left(W^{2}(x) \pm \mathrm{d} W(x) / \mathrm{d} x\right) . \tag{4}
\end{align*}
$$

$W(x)$ is called the superpotential and Q, Q^{+}the supercharges, whose explicit forms are given below:

$$
\begin{align*}
& Q=\frac{1}{\sqrt{2}}(p+\mathrm{i} W)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \tag{5}\\
& Q^{\dagger}=\frac{1}{\sqrt{2}}(p-\mathrm{i} W)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) . \tag{6}
\end{align*}
$$

The relations obeyed by Q, Q^{+}and H^{s} are the following:

$$
\begin{aligned}
& {\left[H^{\mathrm{s}}, Q\right]=\left[H^{\mathrm{s}}, Q^{\dagger}\right]=0} \\
& Q^{2}=Q^{+2}=0
\end{aligned}
$$

The eigenstates of H^{s} are

$$
\begin{equation*}
\phi^{n}(x)=\binom{\phi_{+}^{n}(x)}{\phi_{-}^{n}(x)} . \tag{7}
\end{equation*}
$$

If supersymmetry is unbroken the ground-state energy is zero and the ground-state wavefunctions are of the form

$$
\begin{equation*}
\binom{\phi_{+}^{0}(x)}{0} \quad \text { or } \quad\binom{0}{\phi_{-}^{0}(x)} \tag{8}
\end{equation*}
$$

depending on the normalisability of $\phi_{+}^{0}(x)$ or $\phi_{-}^{0}(x)$. Now if $|\psi\rangle$ is a ground state then

$$
\begin{equation*}
Q|\psi\rangle=Q^{\dagger}|\psi\rangle=0 \tag{9}
\end{equation*}
$$

From (4) and (5) it follows that

$$
\begin{equation*}
\phi_{ \pm}^{0}(x)=\exp \left(\pm \int^{x} W(t) \mathrm{d} t\right) \tag{10}
\end{equation*}
$$

Now consider the case of hydrogenic atom with a perturbation $V(r)=g r+\lambda r^{2}$ with the Schrödinger equation given by

$$
\begin{equation*}
-\frac{1}{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} r^{2}}+\left(\frac{l(l+1)}{2 r^{2}}-\frac{Z}{r}+g r+\lambda r^{2}-E\right) \psi=0 . \tag{11}
\end{equation*}
$$

Following our previous method of constructing exact solutions of Schrödinger equation from supersymmetric considerations (Roy and Roychoudhury 1987b), the general ansatz for W is taken as

$$
\begin{equation*}
W=a r+b+\frac{c}{r}+\sum_{i=1}^{n} \frac{g_{i}}{1+g_{i} r} . \tag{12}
\end{equation*}
$$

Then $V_{-}(r)=\frac{1}{2}\left(W^{2}-W^{\prime}\right)$ can be written in the form

$$
\begin{align*}
2 V_{-}(r)=W^{2}-W^{\prime} & =\frac{c(c+1)}{r^{2}}+b^{2}+a^{2} r^{2}+2 a b r+\frac{2 b c}{r}+2 a c \\
& -2 c \frac{\Sigma g_{i}}{r}+2 c \frac{\Sigma g_{i}^{2}}{1+g_{i} r}+\sum_{j=1}^{n} \sum_{\substack{i=1 \\
i \neq j}}^{n} \frac{g_{i} g_{j}}{g_{i}-g_{j}}\left(\frac{g_{i}}{1+g_{i} r}-\frac{g_{j}}{1+g_{j} r}\right) \\
& -2 b \sum \frac{g_{i}}{1+g_{i} r}-2 n a+2 a \sum \frac{1}{1+g_{i} r}-a . \tag{13}
\end{align*}
$$

Now the effective potential appearing in the Schrödinger equation (11) and that appearing corresponding to the potential $V_{-}(r)$ in (13) are respectively

$$
\begin{align*}
& 2 V^{\mathrm{eff}}(r)=2 \lambda r^{2}+2 g r-\frac{2 Z}{r}+\frac{l(l+1)}{r^{2}} \tag{14}\\
& 2 V_{-}^{\mathrm{eff}}(r)=2 V_{-}(r)+(2 n+1-2 c) a-b^{2} \tag{15}
\end{align*}
$$

(this is $V_{-}(r)$ without the constant term which can be absorbed in the definition of energy). Now we choose g_{i} and a, b and c such that (14) and (15) become identical.

Comparing (14) and (15) we get

$$
\begin{equation*}
c=-(l+1) \quad a=(2 \lambda)^{1 / 2} \quad b=g / a=g /(2 \lambda)^{1 / 2} . \tag{16}
\end{equation*}
$$

A negative value of c is taken so that $\exp \left(-\int^{x} W \mathrm{~d} t\right)$ is normalisable and the g_{i} satisfy $2 c g_{i}^{2}-2 b g_{i}+2 a+2 g_{i}^{2} \sum_{j \neq i} \frac{g_{j}}{g_{i}-g_{j}}=0 \quad i=0,1,2, \ldots, n \quad$ with $g_{0}=0$
and Z is given by

$$
\begin{equation*}
Z=c \sum g_{i}-b c \tag{18}
\end{equation*}
$$

The relation between the supersymmetric energy and the energy for the hydrogenic atom is obtained from the identity

$$
\begin{equation*}
2 V_{-}(r)-2 E_{-}=2 V^{\mathrm{eff}}(r)-2 E_{h} \tag{19a}
\end{equation*}
$$

or

$$
\begin{equation*}
2 E_{-}-\left(b^{2}+2 a c-2 n a-a\right)=2 E_{h} \tag{19b}
\end{equation*}
$$

where E_{h} denotes the eigenvalues of the Schrödinger equation corresponding to the potential (14), and E_{-}is the eigenvalue corresponding to the potential $\frac{1}{2}\left(W^{2}-W^{\prime}\right)$. From (19a) and (19b) we have

$$
\begin{align*}
E_{h} & =E_{-}+\frac{1}{2}\left[(2 n+1-2 c) a-b^{2}\right] \\
& =E_{-}+\left(\frac{1}{2} \lambda\right)^{1 / 2}[(2 n+3+2 l)]-g^{2} / 4 \lambda . \tag{20}
\end{align*}
$$

For the supersymmetric zero-energy state the exact values of E_{h} corresponding to $E_{-}=0$ are given by

$$
\begin{equation*}
E_{h}=\left(\frac{1}{2} \lambda\right)^{1 / 2}[(2 n+3+2 l)]-g^{2} / 4 \lambda \tag{21}
\end{equation*}
$$

and the corresponding wavefunction is

$$
\begin{equation*}
\psi_{-}=c_{0} \exp \left[-(\lambda / 2)^{1 / 2} r^{2}-g r /(2 \lambda)^{1 / 2}\right] r^{l+1} \prod_{i=0}^{n}\left(1+g_{i} r\right) \tag{22}
\end{equation*}
$$

with $g_{0}=0$, and c_{0} being a normalisation constant. g_{i} are given by (17) and Z is not an independent quantity but is obtained in terms of λ and g, by eliminating g_{i} from (17) and (18). For example, when $n=0$,

$$
\begin{equation*}
Z=\frac{g}{(2 \lambda)^{1 / 2}} l(l+1) \tag{23}
\end{equation*}
$$

and, for $n=1$,

$$
\begin{equation*}
g_{1}=\left(\frac{(l+1) g}{(2 \lambda)^{1 / 2}}-Z\right)(l+1)^{-1} \tag{24a}
\end{equation*}
$$

where from (17) g_{1} is given by

$$
\begin{equation*}
-2(l+1) g_{1}^{2}-\frac{2 g}{(2 \lambda)^{1 / 2}} g_{1}+2 a=0 \tag{24b}
\end{equation*}
$$

Eliminating g_{1} from (24a) and (24b) we can easily obtain Z which is given by

$$
\begin{equation*}
Z=\frac{g}{(2 \lambda)^{1 / 2}}\left(l+\frac{3}{2}\right) \pm\left[\sqrt{2 \lambda}(l+1)+g^{2} / 8 \lambda\right]^{1 / 2} . \tag{24c}
\end{equation*}
$$

For general n, however, a simpler method to find Z is the following. Write ψ_{-}in (22) in the form

$$
\begin{equation*}
\psi_{-}=c_{0} \exp \left[-\left(\frac{1}{2} \lambda\right)^{1 / 2} r^{2}-g r /(2 \lambda)^{1 / 2}\right] r^{1+1} \sum_{m=0}^{n} a_{m} r^{m} . \tag{25}
\end{equation*}
$$

Then using this ψ_{-}in the Schrödinger equation (11) we obtain, after a few straightforward steps, the following recurrence relation:

$$
\begin{align*}
& a(n-m) a_{m}+[Z-b(m+l+2)] a_{m+1}+\frac{1}{2}(m+2)(m+2 l+3) a_{m+2}=0 \\
& m=0,1,2, \ldots, n \tag{26}
\end{align*}
$$

where

$$
a=\sqrt{2 \lambda} \quad b=g / \sqrt{2 \lambda} .
$$

Eliminating a_{m} we get

$$
\left|\begin{array}{ccccc}
Z-b(l+1) & l+1 & & & 0 \tag{27}\\
n a & Z-b(l+2) & 3+2 l & & \\
& (n-1) a & Z-b(l+3) & 6+3 l & \\
0 & & a & Z-b(l+n+1) & \frac{1}{2} n(n+2 l+1)
\end{array}\right|=0
$$

This reduces to the result obtained by Bessis et al (1987) when $l=0$.

3. Shifted $\mathbf{1 / N}$ expansion

The method for determining the energy eigenvalues in the shifted $1 / N$ expansion formalism is given in the paper of Imbo et al (1984). Hence for sake of brevity, we omit the intermediate steps and give here only the final expressions.

The energy eigenvalues in the shifted $1 / N$ expansion are given in terms of r_{0}, which is determined from the position of the minimum of the effective potential

$$
\begin{equation*}
V_{\mathrm{eff}}(r)=\frac{1}{8 r^{2}}+\frac{V(r)}{\bar{k}^{2}} \tag{28}
\end{equation*}
$$

For the potential (1), with $N=3$,

$$
\begin{equation*}
\overrightarrow{k^{2}}=4\left(Z r_{0}+g r_{0}^{3}+2 \lambda r_{0}^{4}\right) \tag{29}
\end{equation*}
$$

and the equation for determining r_{0} is found to be

$$
\begin{equation*}
(2 l+1)+\left(2 n_{r}+1\right)\left(\frac{Z+3 g r_{0}^{2}+8 \lambda r_{0}^{3}}{Z+g r_{0}^{2}+2 \lambda r_{0}^{3}}\right)^{1 / 2}=2\left(Z r_{0}+g r_{0}^{3}+2 \lambda r_{0}^{4}\right)^{1 / 2} \tag{30}
\end{equation*}
$$

where n_{r} is the radial quantum number.
The final expression for the eigenvalues for the potential (1) is as follows:

$$
\begin{equation*}
E=\frac{\bar{k}^{2}}{r_{0}^{2}}\left[\frac{1}{8}+\frac{1}{4} \frac{\left(-Z+g r_{0}^{2}+\lambda r_{0}^{3}\right)}{\left(Z+g r_{0}^{2}+2 \lambda r_{0}^{3}\right)}+\frac{\gamma^{(1)}}{\bar{k}^{2}}+\frac{\gamma^{(2)}}{\bar{k}^{3}}+\mathrm{O}\left(\frac{1}{\bar{k}^{4}}\right)\right] . \tag{31}
\end{equation*}
$$

The quantities $\gamma^{(1)}$ and $\gamma^{(2)}$ appearing in the corrections to the leading order of the energy expansion are as follows:

$$
\begin{align*}
& \gamma^{(1)}=\frac{1}{8}(1-a)(3-a)+\left(1+2 n_{r}\right) \tilde{\varepsilon}_{2}+3\left(1+2 n_{r}+2 n_{r}^{2}\right) \tilde{\varepsilon}_{4} \\
&-(1 / \omega)\left[\tilde{\varepsilon}_{1}^{2}+6\left(1+2 n_{r}\right) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{3}+\left(11+30 n_{r}+30 n_{r}^{2}\right) \tilde{\varepsilon}_{3}^{2}\right] \tag{32}\\
& \gamma^{(2)}=\left(1+2 n_{r}\right) \tilde{\delta}_{2}+3\left(1+2 n_{r}+2 n_{r}^{2}\right) \tilde{\delta}_{4}+5\left(3+8 n_{r}+6 n_{r}^{2}+4 n_{r}^{3}\right) \tilde{\delta}_{6} \\
&-\omega^{-1}\left[\left(1+2 n_{r}\right) \tilde{\varepsilon}_{2}^{2}+12\left(1+2 n_{r}+2 n_{r}^{2}\right) \tilde{\varepsilon}_{2} \tilde{\varepsilon}_{4}\right. \\
&+2\left(21+59 n_{r}+51 n_{r}^{2}+34 n_{r}^{3}\right) \tilde{\varepsilon}_{4}^{2}+2 \tilde{\varepsilon}_{1} \tilde{\delta}_{1}+6\left(1+2 n_{r}\right) \tilde{\varepsilon}_{1} \tilde{\delta}_{3} \\
&+30\left(1+2 n_{r}+2 n_{r}^{2}\right) \tilde{\varepsilon}_{1} \tilde{\delta}_{5}+6\left(1+2 n_{r}\right) \tilde{\varepsilon}_{3} \tilde{\delta}_{1} \\
&\left.+2\left(11+30 n_{r}+30 n_{r}^{2}\right) \tilde{\varepsilon}_{3} \tilde{\delta}_{3}+10\left(13+40 n_{r}+42 n_{r}^{2}+28 n_{r}^{3}\right) \tilde{\varepsilon}_{3} \tilde{\delta}_{5}\right] \\
&+\omega^{-2}\left[4 \tilde{\varepsilon}_{1}^{2} \tilde{\varepsilon}_{2}+36\left(1+2 n_{r}\right) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{2} \tilde{\varepsilon}_{3}+8\left(11+30 n_{r}+30 n_{r}^{2}\right) \tilde{\varepsilon}_{2} \tilde{\varepsilon}_{3}^{2}\right. \\
&+24\left(1+2 n_{r}\right) \tilde{\varepsilon}_{1}^{2} \tilde{\varepsilon}_{4}+8\left(31+78 n_{r}+78 n_{r}^{2}\right) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{3} \tilde{\varepsilon}_{4} \\
&\left.+12\left(57+189 n_{r}+225 n_{r}^{2}+150 n_{r}^{3}\right) \tilde{\varepsilon}_{3}^{2} \tilde{\varepsilon}_{4}\right] \\
&-\omega^{-3}\left[8 \tilde{\varepsilon}_{1}^{3} \tilde{\varepsilon}_{3}+108\left(1+2 n_{r}\right) \tilde{\varepsilon}_{1}^{2} \tilde{\varepsilon}_{3}^{2}+48\left(11+30 n_{r}+30 n_{r}^{2}\right) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{3}^{3}\right. \\
&\left.+30\left(31+109 n_{r}+141 n_{r}^{2}+94 n_{r}^{3}\right) \tilde{\varepsilon}_{3}^{4}\right] \tag{33}
\end{align*}
$$

in which

$$
\begin{aligned}
& \tilde{\varepsilon}_{j}=\varepsilon_{j} /(2 \omega)^{j / 2} \quad \tilde{\delta}_{j}=\delta_{j} /(2 \omega)^{j / 2} \\
& \omega=\frac{1}{2}\left(\frac{Z+3 g r_{0}^{2}+8 \lambda r_{0}^{3}}{Z+g r_{0}^{2}+2 \lambda r_{0}^{3}}\right)^{1 / 2} \\
& a=2-2\left(2 n_{r}+1\right) \omega \\
& \delta_{1}=-\frac{2}{3} \delta_{2}=-\frac{1}{4}(1-a)(3-a) \\
& \delta_{3}=-\frac{4}{5} \delta_{4}=2 \varepsilon_{1}=-\frac{4}{3} \varepsilon_{2}=2-a \\
& \varepsilon_{3}=-\frac{1}{2}+\frac{Z}{4\left(Z+g r_{0}^{2}+2 \lambda r_{0}^{3}\right)} \\
& \varepsilon_{4}=\frac{5}{8}-\frac{Z}{4\left(Z+g r_{0}^{2}+2 \lambda r_{0}^{3}\right)} \\
& \delta_{5}=-\frac{3}{4}+\frac{Z}{4\left(Z+g r_{0}^{2}+2 \lambda r_{0}^{3}\right)} \\
& \delta_{6}=\frac{7}{8}-\frac{Z}{4\left(Z+g r_{0}^{2}+2 \lambda r_{0}^{3}\right)^{2}} .
\end{aligned}
$$

4. Results and discussion

When $n=0$, there is a single relation between Z, g and λ (equation (23)). If any two of Z, g and λ are fixed, the third one has a unique value given by equation (23). In this situation n is readily identified with n_{r}. However, when $n>0$, there is a multiplicity of relations. For example, when $n=1$, we see from equation (24) that for a given set of values of g and λ there are two solutions of Z. Similarly, for given values of Z and λ, there are two solutions for g. In general, for any given n and two of the parameters, there are ($n+1$) possible values of the third parameter. Intuitively, one expects that these various solutions should correspond to $n_{r}=0,1,2, \ldots, n$. But the problem is which solution correponds to which n_{r}. The identification is made possible by the shifted $1 / N$ method. We keep Z and λ fixed and treat g as the dependent parameter. Eigenenergies are calculated for the various sets of parameters and a comparison with the supersymmetric values identifies the value of n_{r}.

In tables 1 and 2 we compare the exact supersymmetric results with those obtained by the shifted $1 / N$ method. Table 1 is for $n=0$ and table 2 for $n=1$. As noted earlier, in the latter case, for a given set of values of Z and λ, there are two values of g. Thus in table 2 the first and second lines refer to the same values of Z and λ but different values of g and n_{r}, and so on. These tables can be used to gauge the accuracy of the shifted $1 / N$ expansion for the potential (1) for a range of values of l, Z, λ and g.

An examination of tables 1 and 2 shows that the accuracy of the shifted $1 / N$ expansion varies considerably with the parameters. At one end of the spectrum, there is seven significant figure accuracy for some values (e.g., $n_{r}=0, l=0, Z=10, \lambda=0.1$ in table 1) and, at the other, only one significant figure accuracy (e.g., $n_{r}=1, l=0$, $Z=10, \lambda=1$ in table 2). For the two extreme cases of potential (1), i.e. the Coulomb potential and the harmonic oscillator potential, the shifted $1 / N$ expansion is known

Table 1. Comparison of the eigenvalues calculated from the shifted $1 / N$ expansion with the exact supersymmetric values.

n_{r}	1	Z	λ	g	E (shifted 1/ N method)	E (exact, supersymmetric)
0	0	1	0.1	0.44721	0.17166	0.17082
0	1	1	0.1	0.22361	0.99337	0.99303
0	2	1	0.1	0.14907	1.50979	1.50969
0	3	1	0.1	0.11180	1.98124	1.98121
0	0	1	1.0	1.41421	1.62756	1.62132
0	1	1	1.0	0.70711	3.41141	3.41053
0	2	1	1.0	0.47140	4.89440	4.89419
0	3	1	1.0	0.35355	6.33278	6.33271
0	0	1	10.0	4.47214	6.22680	6.20820
0	1	1	10.0	2.23607	11.05719	11.05534
0	2	1	10.0	1.49071	15.59732	15.59692
0	3	1	10.0	1.11803	20.09349	20.09336
0	0	1	100.0	14.14214	20.75321	20.71320
0	1	1	100.0	7.07107	35.23390	35.23034
0	2	1	100.0	4.71405	49.44267	49.44192
0	3	1	100.0	3.53553	63.60860	63.60836
0	0	1	1000.0	44.72136	66.65904	66.58204
0	1	1	1000.0	22.36068	111.68501	111.67840
0	2	1	1000.0	14.90712	156.47058	156.46920
0	3	1	1000.0	11.18034	201.21530	201.21487
0	0	10	0.1	4.47214	-49.329 18	-49.329 18
0	1	10	0.1	2.23607	-11.38196	-11.38197
0	2	10	0.1	1.49071	-3.990 30	-3.990 31
0	3	10	0.1	1.11803	-1.11253	-1.11254
0	0	10	1.0	14.14214	-47.878 68	-47.87868
0	1	10	1.0	7.07107	-8.964 42	-8.964 47
0	2	10	1.0	4.71405	-0.605 75	-0.605 81
0	3	10	1.0	3.53553	3.23903	3.23896
0	0	10	10.0	44.72136	-43.29158	-43.29180
0	1	10	10.0	22.36068	-1.31903	-1.31966
0	2	10	10.0	14.90712	10.09763	10.09692
0	3	10	10.0	11.18034	17.00007	16.99961
0	0	10	100.0	141.42136	-28.78123	-28.78680
0	1	10	100.0	70.71068	22.86268	22.85534
0	2	10	100.0	47.14045	43.94535	43.94192
0	3	10	100.0	35.35534	60.51606	60.51461
0	0	10	1000.0	447.21359	17.16639	17.08204
0	1	10	1000.0	223.60680	99.33672	99.30340
0	2	10	1000.0	149.07120	150.97866	150.96920
0	3	10	1000.0	111.80340	198.12448	198.12112

to be very successful, but it turns out that, for some of the intermediate cases, the shifted $1 / N$ method gives rather poor results.

An eigenvalue depends on five quantities: n_{r}, l, Z, λ and g. The comparison that we have made in tables 1 and 2 has an important limitation. Because Z, λ, g and l are connected by certain relations, which are different for different n, it is not possible to study the variation in the accuracy of the shifted $1 / N$ method when any four of the five quantities are kept fixed and the fifth one is varied. For this purpose we take recourse to the energies calculated by Bessis et al (1987). These authors have also

Table 2. Comparison of the eigenvalues calculated from the shifted $1 / N$ expansion with the exact supersymmetric values. Components of each pair of lines (starting with the first line) refer to the same values of l, Z and λ but different values of g and n_{r}.

n_{r}	l	Z	λ	g	E (shifted 1/ N method)	$\begin{aligned} & E \text { (exact, } \\ & \text { supersymmetric) } \end{aligned}$
1	0	1	0.1	0.09620	1.15840	1.09490
0				0.57462	0.29349	0.29256
1	1	1	0.1	0.00969	1.57947	1.56501
0				0.36298	1.23619	1.23586
1	2	1	0.1	-0.020 25	2.01632	2.01144
0				0.28113	1.81497	1.81488
1	3	1	0.1	-0.033 59	2.45893	2.45685
0				0.23484	2.32184	2.32180
1	0	1	1.0	-0.179 99	3.65488	3.52744
0				2.30131	2.21796	2.21153
1	1	1	1.0	-0.38885	4.93966	4.91195
0				1.56737	4.33645	4.33559
1	2	1	1.0	-0.430 48	6.32697	6.31763
0				1.25544	5.97013	5.96993
1	3	1	1.0	-0.434 75	7.73488	7.73092
0				1.07115	7.49140	7.49133
1	0	1	10.0	-3.426 12	11.12919	10.88688
0				10.13432	8.63116	8.61273
1	1	1	10.0	-3.609 56	15.37990	15.32675
0				7.33634	14.30878	14.30693
1	2	1	10.0	-3.428 01	19.84892	19.83083
0				6.03675	19.21396	19.21355
1	3	1	10.0	-3.224 73	24.34450	24.33677
0				5.23719	23.91118	23.91104
1	0	10	0.1	2.21624	-11.163 53	-11.16131
0				4.49196	-49.326 23	-49.326 23
1	1	10	0.1	1.45266	-3.709 88	-3.71027
0				2.27412	-11.36386	-11.36386
1	2	10	0.1	1.06545	-0.822 41	-0.825 51
0				1.54329	-3.94192	-3.94192
1	3	10	0.1	0.83191	0.73323	0.72950
0				1.18055	-1.024 59	-1.024 59
1	0	10	1.0	6.87643	-8.284 23	-8.285 77
0				14.33678	-47.850 26	-47.850 27
1	1	10	1.0	4.36557	0.22422	0.18520
0				7.41955	-8.81262	-8.812 67
1	2	10	1.0	3.09798	3.99676	3.96458
0				5.15159	-0.27071	-0.27077
1	3	10	1.0	2.35091	6.41585	6.39648
0				4.01306	3.75209	3.75202
1	0	10	10.0	20.51330	1.09344	0.66045
0				46.56873	-43.035 56	-43.035 84
1	1	10	10.0	12.02307	12.29450	12.03862
0				25.24473	-0.279 31	-0.279 94
1	2	10	10.0	7.96112	18.65074	18.54012
0				18.12634	11.91124	11.91051
1	3	10	10.0	5.68754	23.83952	23.78804
0				14.43707	19.38649	19.38602

employed the method of Stieltjes moments to generate rapidly converging upper and lower bounds to the ground-state energy $E_{0}(Z, g, \lambda)$ for arbitrary g, Z and positive λ. The resulting values are accurate to 9 and 10 significant figures. In table 3 we compare the ground-state energy values obtained by the shifted $1 / N$ method with those of Bessis et al (1987) for $Z=1, \lambda=1$ and a series of g values. It will be noticed that as we go down this table, the error reaches a maximum at $g \simeq-0.5$ and then it steadily decreases as g assumes greater positive values. For very large g, the potential (1) tends to the linear potential; the trend of results in table 3 indicates that for this potential the shifted $1 / N$ expansion should give very good results for the ground state. This is in agreement with the findings of Imbo et al (1984).

Table 3. Comparison between the eigenvalues calculated from the shifted $1 / N$ expansion and those of Bessis et al (1987).

	E (Shifted $1 / N$ method)	E (Bessis et al 1987)	Percentage difference
-2.0	-1.14933	-1.1717	1.9
-1.0	-0.21857	-0.22619	3.4
-0.5	0.20284	0.19600	3.5
-0.1	0.52247	0.51594	1.3
0.0	0.60025	0.59377	1.1
0.1	0.67725	0.67081	1.0
0.5	0.97790	0.97162	0.6
1.0	1.3391	1.3328	0.5
2.0	2.0213	2.0149	0.3
3.0	2.6608	2.6541	0.3
5.0	3.8450	3.8374	0.2

Acknowledgment

This work was supported in part by a research grant from the Natural Sciences and Engineering Research Council of Canada to one of the authors (YPV).

References

[^0]Roy B and Roychoudhury R K 1987a J. Phys. A: Math. Gen. 203051
Roy P and Roychoudhury R K 1987b Phys. Lett. 122A 275
Saxena R P and Varma V S 1982a J. Phys. A: Math. Gen. 15 L149
1982 b J. Phys. A: Math. Gen. 15 L221
Sukhatme U and Imbo T 1983 Phys. Rev. D 28418
Varshni Y P 1987 Phys. Rev. A 363009

[^0]: Bessis D, Vrscay E R and Handy C R 1987 J. Phys. A: Math. Gen. 20419
 Dutt R, Mukherji U and Varshni Y P 1986a Phys. Rev. A 34777
 ——1986b J. Phys. B: At. Mol. Phys. 193411
 Dutt R and Varshni Y P 1987 J. Phys. B: At. Mol. Phys. 202437
 Eichten E, Gottfried K, Kinoshita T, Lane K D and Yan T-M 1978 Phys. Rev. D 173090
 Imbo T, Pagnamenta A and Sukhatme U 1984 Phys. Rev. D 291669
 Killingbeck J 1978 Phys. Lett. 67A 13
 Mlodinow L and Papanicolaou N 1980 Ann. Phys., NY 128314
 -_1981 Ann. Phys., NY 1311
 Quigg C and Rosner J L 1979 Phys. Rep. 56167
 Rein D W 1977 Nuova Cimento A 3819

